Social Icons

Selasa, 27 November 2012

Gelombang

Nomor 1
Diberikan sebuah persamaan gelombang Y = 0,02 sin (10πt − 2πx) dengan t dalam sekon, Y dan x dalam meter.
Tentukan:

a. amplitudo gelombang
b. frekuensi sudut gelombang
c. tetapan gelombang
d. cepat rambat gelombang
e. frekuensi gelombang
f. periode gelombang
g. panjang gelombangh. arah rambat gelombang
i. simpangan gelombang saat t = 1 sekon dan x = 1 m
j. persamaan kecepatan gelombang
k. kecepatan maksimum gelombang
l. persamaan percepatan gelombang
m. nilai mutlak percepatan maksimum
n. sudut fase saat t = 0,1 sekon pada x = 1/3 m
o. fase saat t = 0,1 sekon pada x = 1/3 m
Pembahasan :

Bentuk persamaan umum gelombang:


            Y = A sin (ωt - kx)


dengan A amplitudo gelombang,   ω = 2πf dan k=2π/λ dengan demikian :

a. A = 0,02 m

b. ω = 10π rad/s
c. k = 2π
d. v =  ω/k = 10π/2π = 5 m/s

e. f =  ω/2π = 10π/2π = 5 Hz

f. T = 1/f  = 1/ 5 = 0, 2 sekon

g. λ = 2π/k = 2π/2π = 1 m

h. ke arah sumbu x positif

i. Y = 0,02sin(10 π- 2π)=0,02sin(8π)= 0 m
j. v = ω A cos(ωt−kx)=10π(0,02) cos(10πt−2πx) m/s
k. vmaks = ωA = 10π(0,02) m/s
l. a = −ω2y=−(10π)2 (0,02)sin(10πt−2πx) m/s2
m. amaks =|−ω2A|=|−10π2 (0,02)| m/s2
n. sudut fase θ = (10.π.0,1−2π.(1/3)=1/3 π = 60o
o. fase φ = 60o/360o = 1/6


Nomor 2
Suatu gelombang permukaan air yang frekuensinya 500 Hz merambat dengan kecepatan 350 m/s. tentukan jarak antara dua titik yang berbeda sudut fase 60°!
(Sumber : Soal SPMB)


Pembahasan :

Lebih dahulu tentukan besarnya panjang gelombang dimana



Beda fase gelombang antara dua titik yang jaraknya diketahui adalah


Nomor 3
Seutas tali salah satu ujungnya digerakkan naik turun sedangkan ujung lainnya terikat. Persamaan gelombang tali adalah y = 8 sin (0,1π) x cos π (100t - 12) dengan y dan x dalam cm dan t dalam satuan sekon. Tentukan:

a. panjang gelombang

b. frekuensi gelombang

c. panjang tali

(Sumber : Soal Ebtanas)


Pembahasan :

Pola dari gelombang stasioner diatas adalah



a. menentukan panjang gelombang


b. menentukan frekuensi gelombang


c. menentukan panjang tali



Nomor 4
Diberikan grafik dari suatu gelombang berjalan seperti gambar di bawah!



Jika jarak P ke Q ditempuh dalam waktu 5 sekon, tentukan persamaan dari gelombang di atas! (Tipikal Soal UN)


Pembahasan :

Bentuk umum persamaan gelombang adalah

 
atau



atau

dengan perjanjian tanda sebagai berikut :

Tanda Amplitudo (+) jika gerakan pertama ke arah atas

Tanda Amplitudo (-) jika gerakan pertama ke arah bawah

Tanda dalam kurung (+) jika gelombang merambat ke arah sumbu X negatif / ke kiri

Tanda dalam kurung (-) jika gelombang merambat ke arah sumbu X positif / ke kanan


ambil data dari soal panjang gelombang  (λ) = 2 meter, dan periode (T) = 5/2 sekon atau frekuensi (f) = 2/5 Hz, masukkan data ke pola misal pola ke 2 yang dipakai didapat



Nomor 5
Seutas kawat bergetar menurut persamaan :



Jarak perut ketiga dari titik  x = 0 adalah.....
A. 10 cm
B. 7,5 cm
C. 6,0 cm
D. 5,0 cm
E. 2,5 cm
Sumber Soal : Marthen Kanginan 3A Gejala Gelombang

Pembahasan :

Pola diatas adalah pola untuk persamaan gelombang stasioner ujung tetap atau ujung terikat. Untuk mencari jarak perut atau simpul dari ujung ikatnya, tentukan dulu nilai dari panjang gelombang.



Setelah ketemu panjang gelombang, tinggal masukkan rumus untuk mencari perut ke -3 . Lupa rumusnya,..!?! Atau takut kebalik-balik dengan ujung bebas,..!? Ya sudah tak usah pakai rumus, kita pakai gambar saja seperti di bawah:

Posisi perut ketiga Pdari ujung tetap A adalah satu seperempat panjang gelombang atau (5/4) λ  (Satu gelombang  = satu bukit - satu lembah), sehingga nilai X adalah :

X = (5/4) λ = (5/4) x 6 cm = 7,5 cm

Nomor 6
Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase sama adalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s!

Pembahasan
Data dari soal:
f = 0,25 Hz
Jarak dua titik yang berurutan dan sefase:
λ = 0, 125 m
ν = .....

ν = λ f
ν = (0,125)(0,25) = 0,03125 m/s = 3,125 cm/s

Nomor 7
Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase berlawanan adalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s!

Pembahasan
Data dari soal:
f = 0,25 Hz
Jarak dua titik yang berurutan dan berlawanan fase:
1/2λ = 0, 125 m → λ = 2 × 0,125 = 0,25 m
ν = .....

ν = λ f
ν = (0,25)(0,25) = 0,0625 m/s = 6,25 cm/s


Nomor 8
Diberikan sebuah persamaan gelombang:
y = 0,05 cos (10t + 2x) meter
Tentukan :
a) Persamaan kecepatan
b) Persamaan percepatan

Pembahasan
y)
↓    diturunkan
ν)
↓    diturunkan
a)

sehingga:
y = 0,05 cos (10t + 2x) meter
Turunannya adalah:
ν = − (10)(0,05) sin (10t + 2x)
ν = − 0,5 sin (10t + 2x) m/s
Turunannya adalah:
a = − (10)(0,5) cos (10t + 2x)
a = − 5 cos (10t + 2x) m/s2

Read more: http://fisikastudycenter.com/

1 komentar: